420 research outputs found

    Microdosimetric concepts relevant to HZE-particles

    Get PDF
    The biological effectiveness of HZE-particles i s determined by the extreme microscopic concentrations of energy transfer in the vicinity of the particle tracks. The concept of linear energy transfer fails to describe this situation adequately. The more rigorous microdosimetric concepts are presented. A simplified treatment, based on the radial distribution of energy around the track core, is then considered

    An algorithm for LET-analysis

    Get PDF
    An algorithm for the derivation of LET-distributions from pulse- height spectra obtained with proportional counters is described. The method is based on Fourier transformation: it is applicable to spherical as well as non-spherical proportional counters. The relation between the energy mean, LD, of LET and the energy mean, yD, of the lineal energy density is given

    Transit times through the cycle phases of jejunal crypt cells of the mouse

    Get PDF
    Mean transit times as well as variances of the transit times through the individual phases of the cell cycle have been determined for the crypt epithelial cells of the jejunum of the mouse. To achieve this the fraction of labelled mitoses (FLM) technique has been modified by double labelling with [3H] and [14C]thymidine. Mice were given a first injection of [3H]thymidine, and 2 hr later a second injection of [14C]thymidine. This produces a narrow subpopulation of purely 3H-labelled cells at the beginning of G2-phase and a corresponding subpopulation of purely 14C-labelled cells at the beginning of the S-phase. When these two subpopulations progress through the cell cycle, one obtains FLM waves of purely 3H- and purely 14C-labelled mitoses. These waves have considerably better resolution than the conventional FLM-curves. From the temporal positions of the observed maxima the mean transit times of the cells through the individual phases of the cycle can be determined. Moreover one obtains from the width of the individual waves the variances of the transit times through the individual phases. It has been found, that the variances of the transit times through successive phases are additive. This indicates that the transit times of cells through successive phases are independently distributed. This statistical independence is an implicit assumption in most of the models applied to the analysis of FLM curves, however there had previously been no experimental support of this assumption. A further result is, that the variance of the transit time through any phase of the cycle is proportional to the mean transit time. This implies that the progress of the crypt epithelial cells is subject to an equal degree of randomness in the various phases of the cycle

    Concepts of microdosimetry

    Get PDF
    This is the first part of an investigation of microdosimetric concepts relevant to numerical calculations. The definitions of the microdosimetric quantities are reviewed and formalized, and some additional conventions are adopted. The common interpretation of the quantities in terms of energy imparted to spherical sites is contrasted with their interpretation as the result of a diffusion process applied to the initial spatial pattern of energy transfers in the irradiated medium

    The reverse protraction factor in the induction of bone sarcomas in radium-224 patients

    Get PDF
    More than 50 bone sarcomas have occurred among a collective of about 800 patients who had been injected in Germany after World War II with large activities of radium-224 for the intended treatment of bone tuberculosis and ankylosing spondylitis.^In an earlier analysis it was concluded that, at equal mean absorbed doses in the skeleton, patients with longer exposure time had a higher incidence of bone sarcomas.^The previous analysis was based on approximations; in particular, it did not account for the varying times at risk of the individual patients.^In view of the implications of a reverse protraction factor for basic considerations in radiation protection, the need was therefore felt to reevaluate the data from the continued follow-up by more rigorous statistical methods.^A first step of the analysis demonstrates the existence of the reverse dose-rate effect in terms of a suitably constructed rank-order test.^In a second step of the analysis it is concluded that the data are consistent with a linear no-threshold dose dependence under the condition of constant exposure time, while there is a steeper than linear dependence on dose when the exposure times increase proportionally to dose.^A maximum likelihood fit of the data is then performed in terms of a proportional hazards model that includes the individual parameters, dose, treatment duration, and age at treatment.^The fit indicates proportionality of the tumor rates to mean skeletal dose with an added factor (1 + 0.18.tau), where tau is the treatment time in months.^This indicates that a protraction of the injections over 15 months instead of 5 months doubles the risk of bone sarcoma

    His+ reversions Caused in Salmonella typhimurium by different types of ionizing radiation

    Get PDF
    The yield of his+ reversions in the Ames Salmonella tester strain TA2638 has been determined for 60Co γ rays, 140 kV X rays, 5.4 keV characteristic X rays, 2.2 MeV protons, 3.1 MeV α particles, and 18 MeV/U Fe ions. Inactivation studies were performed with the same radiations. For both mutation and inactivation, the maximum effectiveness per unit absorbed dose was obtained for the characteristic X rays, which have a dose averaged linear energy transfer (LET) of roughly 10 keV/μm. The ratio of the effectiveness of this radiation to γ rays was 2 for inactivation and about 1.4 for the his+ reversion. For both end points the effectiveness decreases substantially at high LET, i.e., for the α particles and the Fe ions. The composition of the bottom and the top agar was the one recommended by Maron and Ames [Mutat. Res. 113, 173-215 (1983)] for application in chemical mutagenicity tests. The experiments with the less penetrating radiations differed from the usual protocol by utilization of a technique of plating the bacteria on the surface of the top agar. As in an earlier study [Roos et al., Radiat. Res. 104, 102-108 (1985)] greatly enhanced yields of mutations, relative to the spontaneous reversion rate, were obtained in these experiments by performing the irradiations 6 h after plating, which differs from the conventional procedure to irradiate the bacteria shortly after plating
    corecore